Спектральная мощность. Спектральная плотность. Смотреть что такое "Спектральная плотность мощности" в других словарях

Взаимная спектральная плотность мощности(взаимный спектр мощности) двух реализаций и стационарных эргодических случайных процессов и определяется как прямое преобразование Фурье над их взаимной ковариационной функцией

или, с учетом соотношения между круговой и циклической частотами ,

Обратное преобразование Фурье связывает взаимные ковариационную функцию и спектральную плотность мощности:

Аналогично (1.32), (1.33) вводится спектральная плотность мощности(спектр мощности) случайного процесса

Функция обладает свойством четности:

Для взаимной спектральной плотности справедливо следующее соотношение:

где – функция, комплексно сопряженная к .

Введенные выше формулы для спектральных плотностей определены как для положительных, так и для отрицательных частот и носят название двухсторонних спектральных плотностей . Они удобны при аналитическом изучении систем и сигналов. На практике же пользуются спектральными плотностями, определенными только для неотрицательных частот и называемыми односторонними (рисунок 1.14):

Рисунок 1.14 – Односторонняя и двусторонняя

спектральные плотности

Выведем выражение, связывающее одностороннюю спектральную плотность стационарного СП с его ковариационной функцией:

Учтем свойство четности для ковариационной функции стационарного СП и функции косинус, свойство нечетности для функции синус, а также симметричность пределов интегрирования. В результате второй интеграл в полученном выше выражении обращается в нуль, а в первом интеграле можно сократить вдвое пределы интегрирования, удвоив при этом коэффициент:

Очевидно, что спектральная плотность мощности случайного процесса является действительной функцией.

Аналогично можно получить обратное соотношение:

Из выражения (1.42) при следует, что

Это означает, что общая площадь под графиком односторонней спектральной плотности равна среднему квадрату случайного процесса. Другими словами, односторонняя спектральная плотность интерпретируется как распределение среднего квадрата процесса по частотам.

Площадь под графиком односторонней плотности, заключенная между двумя произвольными значениями частоты и , равна среднему квадрату процесса в этой полосе частот спектра (рисунок 1.15):

Рисунок 1.15 – Свойство спектральной плотности

Взаимная спектральная плотность мощности является комплексной величиной, поэтому ее можно представить в показательной форме записи через модуль и фазовый угол :


где – модуль;

– фазовый угол;

, – действительная и мнимая части функции соответственно.

Модуль взаимной спектральной плотности входит в важное неравенство

Это неравенство позволяет определить функцию когерентности (квадрат когерентности), которая аналогична квадрату нормированной корреляционной функции:

Второй способ введения спектральных плотностей состоит в непосредственном преобразовании Фурье случайных процессов.

Пусть и – два стационарных эргодических случайных процесса, для которых финитные преобразования Фурье -х реализаций длины определяют в виде

Двусторонняя взаимная спектральная плотность этих случайных процессов вводится с использованием произведения через соотношение

где оператор математического ожидания означает операцию усреднения по индексу .

Расчет двусторонней спектральной плотности случайного процесса осуществляют по соотношению

Аналогично вводятся и односторонние спектральные плотности:

Функции , определенные формулами (1.49), (1.50), идентичны соответствующим функциям, определенным соотношениями (1.32), (1.33) как преобразования Фурье над ковариационными функциями. Это утверждение носит называние теоремы Винера-Хинчина.

Контрольные вопросы

1. Приведите классификацию детерминированных процессов.

2. В чем отличие между полигармоническими и почти периодическими процессами?

3. Сформулируйте определение стационарного случайного процесса.

4. Какой способ усреднения характеристик эргодического случайного процесса предпочтителен – усреднение по ансамблю выборочных функций или усреднение по времени наблюдения одной реализации?

5. Сформулируйте определение плотности распределения вероятности случайного процесса.

6. Запишите выражение, связывающее корреляционную и ковариационную функции стационарного случайного процесса.

7. В каком случае два случайных процесса считаются некоррелированными?

8. Укажите способы расчета среднего квадрата стационарного случайного процесса.

9. Каким преобразованием связаны спектральная плотность и ковариационная функции случайного процесса?

10. В каких пределах изменяются значения функции когерентности двух случайных процессов?

Литература

1. Сергиенко, А.Б. Цифровая обработка сигналов / А.Б. Сергиенко. – М: Питер, 2002.– 604 с.

2. Садовский, Г.А. Теоретические основы информационно-измерительной техники / Г.А. Садовский. – М.: Высшая школа, 2008. – 480 с.

3. Бендат, Д. Применение корреляционного и спектрального анализа / Д. Бендат, А. Пирсол. – М.: Мир, 1983. – 312 с.

4. Бендат, Д. Измерение и анализ случайных процессов / Д. Бендат, А. Пирсол. – М.: Мир, 1974. – 464 с.

Оценка спектральной плотности мощности представляет известную проблему для случайных процессов. Примерами случайных процессов может служить шум, а также сигналы, несущие информацию. Обычно требуется найти статистически устойчивую оценку. Анализ сигналов подробно рассматривается в курсе «Цифровая обработка сигналов» . Начальные сведения изложены в .

Для сигналов с известными статистическими характеристиками спектральный состав может быть определен по конечному интервалу этого сигнала. При неизвестности статистических характеристик сигнала по отрезку сигнала можно получить только оценку его спектра. Разные методы использую различные допущения, и поэтому дают различные оценки.

При выборе оценки исходят из того, что в общем случае анализируемый сигнал представляет собой случайный процесс. И требуется выбрать несмещенную оценку, обладающую малой дисперсией, позволяющую усреднить спектр сигнала. Смещением называют разницу между средним значением оценки и истинным значением величины. Несмещенной оценкой называют оценку с нулевым смещением. Оценка с малой дисперсией хорошо локализует искомые величины, т.е. плотность вероятности сконцентрирована около среднего значения. Желательно иметь состоятельную оценку, т.е. оценку, которая при увеличении размера выборки стремится к истинному значению (смещение и дисперсия стремятся к нулю). Различают оценки параметрические, использующие только информацию о самом сигнале и непараметрические, использующие статистическую модель случайного сигнала, и осуществляющие подбор параметров этой модели.

При оценках случайных процессов распространено использование корреляционных функций.

Для эргодичного процесса возможно определение статистических параметров процесса путем усреднения по одной реализации.

Для стационарного случайного процесса корреляционная функция R x (t) зависит от интервала времени, для которого она определяется. Эта величина характеризует связь между значениями x(t), разделенными промежутком t. Чем медленнее убывает R(t), тем больше промежуток, в течение которого наблюдается статистическая связь между значениями случайного процесса.

где - математическое ожидание x(t).

Соотношение между корреляционной функцией R(t) и спектральной плотностью мощности W(w) для случайного процесса определяется теоремой Винера-Хинчина

Для дискретных процессов теорема Винера-Хинчина устанавливает связь между спектром дискретного случайного процесса W(w) и его корреляционной функции R x (n)

W(w)= R x (n)·exp(-j·w·n·T)

Для оценки энергии сигнала во временной и частотной областях используется равенство Парсеваля



Одним из распространенных способов получения оценки спектральной плотности является применение метода периодограмм.

Периодограмма (Periodogram) .В этом методе производится дискретное преобразование Фурье для сигнала x(n), заданного в дискретных точках выборки длиной N отсчетов и его статистическое усреднение. Фактическое вычисление спектра X(k), выполняется только в конечном количестве частотных точек N. Применяется быстрое преобразование Фурье (FFT). Вычисляется спектральная плотность мощности, приходящаяся на один отсчет выборки:

P xx (X k)=|X(k)| 2 /N, X(k)= , k=0,1,…,N-1.

Для получения статистически устойчивой оценки, имеющиеся данные разбивают на перекрывающиеся выборки, с последующим усреднением спектров, полученных по каждой выборке. Задается число отсчетов на выборку N и сдвиг начала каждой последующей выборки относительно начала предыдущей N t . Чем меньше число отсчетов в выборке, тем больше выборок и меньшая дисперсия у оценок. Но поскольку длина выборки N связана с частотным разрешением (2.4), то уменьшение длины выборки ведет к уменьшению частотного разрешения.

Таким образом, сигнал просматривается через окно, а данные, не попадающие в окно, принимаются равными нулю. Конечный сигнал x(n) состоящий из N отсчетов, обычно представляют как результат умножения бесконечного по времени сигнала (n) на прямоугольное окно с конечной длиной w R (n):

x(n) = (n) ∙w R (n),

а непрерывный спектр X N (f) наблюдаемых сигналов x(n) определится как свертка Фурье-образов X(f), W R (f) бесконечного по времени сигнала (n) ∙и окна w R (n)



X N (f)=X(f)*W R (f)=

Спектр непрерывного прямоугольного окна (rect) имеет форму интегрального синуса sinc(x)=sin(x)/x. Он содержит главный «лепесток» и несколько боковых, из которых самый большой приблизительно на 13 dB ниже основного пика (см. рис.15).

Фурье-образ (спектр) дискретной последовательности, получаемой N-точечной дискретизацией непрерывного прямоугольного окна, показан на рис.32. Он может быть вычислен суммированием смещенных интегральных синусов (2.9), в результате получается ядро Дирихле

Рис. 32. Спектр дискретного прямоугольного окна

В то время как сигнал с бесконечной длиной сконцентрирует его мощность точно в дискретной частоте f k , прямоугольная выборка сигнала имеет распределенный спектр мощности. Чем короче выборка, тем более распределенный спектр.

При спектральном анализе производится взвешивание данных с помощью оконных функций, чем добиваются уменьшения влияния боковых «лепестков» на спектральные оценки.

Чтобы обнаружить две гармоники f 1 и f 2 с близкими частотами, необходимо, чтобы для временного окна T ширина главного «лепестка» Df -3 ≈ Df L =0 =1/Т, определяемая на значении -3дБ, была меньше разности искомых частот

Df=f 1 -f 2 > Df -3

Ширина временного окна Т связана с частотой дискретизацией f s и числом отсчетов выборки формулой (2.4).

Инструментальные средства гармонического анализа . Для исследования сигналов очень удобно применение пакета MATLAB, в частности, его приложения (Toolbox) Signal Processing.

Модифицированные периодограммы используют непрямоугольные оконные функции, уменьшающие эффект Гиббса. Примером может служить использование окна Хэмминга (Hamming). Но при этом одновременно происходит примерно вдвое увеличение ширины главного лепестка спектрограммы. Несколько более оптимизировано окно Кайзера (Kaiser). Увеличение ширины главных лепестков при создании фильтров нижних частот ведет к увеличению переходной полосы (между полосами пропускания и задержания).

Оценочная функция Уэлча (Welch) . Метод состоит из деления последовательных данных времени в сегменты (возможно с перекрытием), далее обрабатывается каждый сегмент, а затем оценивают спектр путем усреднения результатов обработки сегментов. Для улучшения оценки могут использоваться непрямоугольные оконные функции, например окно Хэмминга. Увеличение числа сегментов уменьшает дисперсию, но при этом уменьшается разрешение метода по частоте. Метод дает неплохие результаты при малом превышении полезного сигнала над шумом и достаточно часто используется на практике.

На рис.33 приведены оценки гармонического состава для данных, содержащих узкополосые полезные сигналы и белый шум, при различных выборках (N=100, N=67), и использовании различных методов.

Рис. 33. Оценка гармоник сигнала для 1024 точечного FFT-преобразования

Параметрические методы используют авторегрессионные модели (AR). В методах строятся модели фильтров и с их помощью оценивают спектры сигналов. Все методы при наличии шума в сигнале дают смещенные оценки. Предназначены методы для обработки сигналов имеющих гармонические составляющие на фоне шума. Порядок метода (фильтра) задается в два раза больше, чем число гармоник, присутствующих в сигнале. Предложено несколько параметрических методов .

Метод Берга (Burg) дает высокую разрешающую способность по частоте для коротких выборок. При большом порядке фильтра спектральные пики расщепляются. Положение спектральных пиков зависит от начальных фаз гармонических.

Ковариационный (covariance) метод позволяет оценить спектр сигнала, содержащего сумму гармонических компонентов.

Метод Юла-Уоркера (Yule-Walker) дает хорошие результаты на длинных выборках и не рекомендуется для коротких выборок.

Корреляционные методы . Методы MISIC (Multiple Signal Classification) и EV (eigenvectors) выдают результаты в форме псевдоспектра. В основе методов лежит анализ векторов корреляционной матрицы сигнала. Эти методы дают несколько лучшее разрешение по частоте, чем автокорреляционные методы.

Подразумевая под случайным процессом множество (ансамбль) функций времени, необходимо иметь в виду, что функциям, имеющим различную форму, соответствуют различные спектральные характеристики. Усреднение комплексной спектральной плотности, введенной в § 2.6 или 2.1, по всем функциям приводит к нулевому спектру процесса (при ) из-за случайности и независимости фаз спектральных составляющих в различных реализациях.

Можно, однако, ввести понятие спектральной плотности среднего квадрата случайной функции, поскольку значение среднего квадрата не зависит от соотношения фаз суммируемых гармоник. Если под случайной функцией подразумевается электрическое напряжение или ток, то средний квадрат этой функции можно рассматривать как среднюю мощность, выделяемую в сопротивлении 1 Ом. Эта мощность распределена по частотам в некоторой полосе, зависящей от механизма образования случайного процесса. Спектральная плотность средней мощности представляет собой среднюю мощность, приходящуюся на 1 Гц при заданной частоте . Размерность функции , являющейся отношением мощности к полосе астот, есть

Спектральную плотность случайного процесса можно найти, если известен механизм образования случайного процесса. Применительно к шумам, связанным с атомистической структурой материи и электричества, эта задача будет рассмотрена в § 7.3. Здесь же мы ограничимся несколькими определениями общего характера.

Выделив из ансамбля какую-либо реализацию и ограничив ее длительность конечным интервалом Т, можно применить к ней обычное преобразование Фурье и найти спектральную плотность (со). Тогда энергию рассматриваемого отрезка реализации можно вычислить с помощью формулы (2.66):

Разделив эту энергию на получим среднюю мощность k-й реализации на отрезке Т

При увеличении Т энергия возрастает, однако отношение стремится к некоторому пределу. Совершив предельный переход получим

представляет собой спектральную плотность средней мощности рассматриваемой реализации.

В общем случае величина должна быть усреднена по множеству реализаций. Ограничиваясь в данном случае рассмотрением стационарного и эргодического процесса, можно считать, что найденная усреднением по одной реализации функция характеризует весь процесс в целом.

Опуская индекс k, получаем окончательное выражение для средней мощности случайного процесса

Если рассматривается случайный процесс с ненулевым средним значением то спектральную плотность следует представить в форме

Наиболее важной характеристикой стационарных случайных процессов является спектральная плотность мощности, описывающая распределение мощности шума по частотному спектру. Рассмотрим стационарный случайный процесс, который может быть представлен беспорядочной последовательностью импульсов напряжения или тока, следующих друг за другом через случайные интервалы времени. Процесс со случайной последовательностью импульсов является непериодическим. Тем не менее, можно говорить о спектре такого процесса, понимая в данном случае под спектром распределение мощности по частотам.

Для описания шумов вводят понятие спектральной плотности мощности (СПМ) шума, называемой также в общем случае спектральной плотностью (СП) шума,которая определяется соотношением:

где P (f ) - усредненная по времени мощность шума в полосе частотf на частоте измеренияf .

Как следует из соотношения (2.10), СП шума имеет размерность Вт/Гц. В общем случае СП является функцией частоты. Зависимость СП шума от частоты называют энергетическим спектром , который несет информацию о динамических характеристиках системы.

Если случайный процесс эргодический, то можно находить энергетический спектр такого процесса по его единственной реализации, что широко используется на практике..

При рассмотрении спектральных характеристик стационарного случайного процесса часто оказывается необходимым пользоваться понятием ширины спектра шума. Площадь под кривой энергетического спектра случайного процесса, отнесенную к СП шума на некоторой характерной частоте f 0 , называютэффективной шириной спектра , которая определяется по формуле:

(2.11)

Эту величину можно трактовать как ширину равномерного энергетического спектра случайного процесса в полосе
, эквивалентного по средней мощности рассматриваемому процессу.

Мощность шума P , заключенная в полосе частотf 1 …f 2 , равна

(2.12)

Если СП шума в полосе частот f 1 ...f 2 постоянна и равнаS 0 , тогда для мощности шума в данной полосе частот имеем:
гдеf =f 2 -f 1 – полоса частот, пропускаемая схемой или измерительным прибором.

Важным случаем стационарного случайного процесса является белый шум, для которого спектральная плотность не зависит от частоты в широком диапазоне частот (теоретически – в бесконечном диапазоне частот). Энергетический спектр белого шума в диапазоне частот -∞ < f < +∞ дается выражением:

= 2S 0 = const, (2.13)

Модель белого шума описывает случайный процесс без памяти (без последействия). Белый шумвозникает в системах с большим числом простых однородных элементов и характеризуется распределением амплитуды флуктуаций по нормальному закону. Свойства белого шума определяются статистикой независимых одиночных событий (например, тепловым движением носителей заряда в проводнике или полупроводнике). Вместе с тем истинный белый шум с бесконечной полосой частот не существует, поскольку он имеет бесконечную мощность.

На рис. 2.3. приведена типичная осциллограмма белого шума (зависимость мгновенных значений напряжения от времени) (рис. 2.3а) и функция распределения вероятности мгновенных величин напряжения e ,которая является нормальным распределением (рис. 2.3б). Заштрихованная площадь под кривой соответствует вероятности появления мгновенных величин напряженияe , превышающих значениеe 1 .

Рис. 2.3. Типичная осциллограмма белого шума (а) и функция распределения плотности вероятности мгновенных величин амплитуды напряжения шума (б).

На практике при оценке величины шума какого-либо элемента или п/п прибора обычно измеряют среднеквадратичное шумовое напряжение в единицах В 2 или среднеквадратичный токв единицах А 2 . При этом СП шума выражают в единицах В 2 /Гц или А 2 /Гц, а спектральные плотности флуктуаций напряженияS u (f ) или токаS I (f ) вычисляются по следующим формулам:

(2.14)

где
и – усредненные по времени шумовое напряжение и ток в полосе частотf соответственно. Черта сверху означает усреднение по времени.

В практических задачах при рассмотрении флуктуаций различных физических величин вводят понятие обобщенной спектральной плотности флуктуаций. При этом СП флуктуаций, например, для сопротивления R выражается в единицах Ом 2 /Гц; флуктуации магнитной индукции измеряются в единицах Тл 2 /Гц, а флуктуации частоты автогенератора – в единицах Гц 2 /Гц = Гц.

При сравнении уровней шума в линейных двухполюсниках одного и того же типа удобно пользоваться относительной спектральной плотностью шума, которая определяется как

=
, (2.15)

где u – падение постоянного напряжения на линейном двухполюснике.

Как видно из выражения (2.15), относительная спектральная плотность шума S (f ) выражается в единицах Гц -1 .

Пусть сигнал s (t ) задан в виде непериодической функции, причем он существует только на интервале (t 1 ,t 2) (пример - одиночный импульс). Выберем произвольный отрезок времени T , включающий в себя интервал (t 1 ,t 2) (см. рис.1).

Обозначим периодический сигнал, полученный из s (t ), в виде (t ). Тогда для него можно записать ряд Фурье

Для того, чтобы перейти к функции s (t ) следует в выражении (t ) устремить период к бесконечности. При этом число гармонических составляющих с частотами w =n 2p /T будет бесконечно велико, расстояние между ними будет стремиться к нулю (к бесконечно малой величине:

амплитуды составляющих также будут бесконечно малы. Поэтому говорить о спектре такого сигнала уже нельзя,т.к.спектр становится сплошным.

Внутренний интеграл является функцией частоты. Его называют спектральной плотностью сигнала, или частотной характеристикой сигнала и обозначают т.е.

Пределы интегрирования можно для общности поставить бесконечными, так как все равно там, где s(t) равна нулю, и интеграл равен нулю.

Выражение для спектральной плотности называют прямым преобразованием Фурье. Обратное преобразование Фурье определяет временную функцию сигнала по его спектральной плотности

рямое (*) и обратное (**) преобразования Фурье вместе называют парой преобразований Фурье. Модуль спектральной плотности

определяет амплитудно-частотную характеристику (АЧХ) сигнала, а ее аргумент называют фазо-частотной характеристикой (ФЧХ) сигнала. АЧХ сигнала является четной функцией, а ФЧХ - нечетной.

Смысл модуля S (w ) определяется как амплитуда сигнала (тока или напряжения), приходящаяся на 1 Гц в бесконечно узкой полосе частот, которая включает в себя рассматриваемую частоту w . Его размерность - [сигнал/частота].

Энергетический спектр сигнала. Если функция s(t) имеет фурье-плотность мощности сигнала (спектральная плотность энергии сигнала ) определяется выражением:

w(t) = s(t)s*(t) = |s(t)|2  |S()|2 = S()S*() = W(). (5.2.9)

Спектр мощности W()-вещественная неотрицательная четная функция, которую обычно называют энергетическим спектром. Спектр мощности, как квадрат модуля спектральной плотности сигнала, не содержит фазовой информации о его частотных составляющих, а, следовательно, восстановление сигнала по спектру мощности невозможно. Это означает также, что сигналы с различными фазовыми характеристиками могут иметь одинаковые спектры мощности. В частности, сдвиг сигнала не отражается на его спектре мощности. Последнее позволяет получить выражение для энергетического спектра непосредственно из выражений (5.2.7). В пределе, для одинаковых сигналов u(t) и v(t) при сдвиге t 0, мнимая часть спектра Wuv () стремится к нулевым значениям, а реальная часть - к значениям модуля спектра. При полном временном совмещении сигналов имеем:

т.е. энергия сигнала равна интегралу квадрата модуля его частотного спектра - сумме энергии его частотных составляющих, и всегда является вещественной величиной.

Для произвольного сигнала s(t) равенство

обычно называют равенством Парсеваля (в математике – теоремой Планшереля, в физике – формулой Релея). Равенство очевидно, так как координатное и частотное представления по существу только разные математические отображения одного и того же сигнала. Аналогично для энергии взаимодействия двух сигналов:

Из равенства Парсеваля следует инвариантность скалярного произведения сигналов и нормы относительно преобразования Фурье:

В целом ряде чисто практических задач регистрации и передачи сигналов энергетический спектр сигнала имеет весьма существенное значение. Периодические сигналы переводятся в спектральную область в виде рядов Фурье. Запишем периодический сигнал с периодом Т в виде ряда Фурье в комплексной форме:

Интервал 0-Т содержит целое число периодов всех подынтегральных экспонент, и равен нулю, за исключением экспоненты при k = -m, для которой интеграл равен Т. Соответственно, средняя мощность периодического сигнала равна сумме квадратов модулей коэффициентов его ряда Фурье:

Энергетический спектр сигнала – это распределение энергии базисных сигналов, которые составляют негармонический сигнал, на оси частот. Математически энергетический спектр сигнала равен квадрату модуля спектральной функции:

Соответственно амплитудно-частотный спектр показывает множество амплитуд составляющих базисных сигналов на частотной оси, а фазо-частотный – множество фаз

Модуль спектральной функции часто называют амплитудным спектром , а ее аргумент – фазовым спектром .

Кроме того, существует и обратное преобразование Фурье, позволяющее восстановить исходный сигнал, зная его спектральную функцию:

Например, возьмем прямогульный импульс:

Еще один пример спектров:

Частота Найквиста, теорема Котельникова .

Частота Найквиста - в цифровой обработке сигналов частота, равная половине частоты дискретизации. Названа в честь Гарри Найквиста. Из теоремы Котельникова следует, что при дискретизации аналогового сигнала потерь информации не будет только в том случае, если спектр (спектральная плотность)(наивысшая частота полезного сигнала) сигнала равен или ниже частоты Найквиста. В противном случае при восстановлении аналогового сигнала будет иметь место наложение спектральных «хвостов» (подмена частот, маскировка частот), и форма восстановленного сигнала будет искажена. Если спектр сигнала не имеет составляющих выше частоты Найквиста, то он может быть (теоретически) продискретизирован и затем восстановлен без искажений. Фактически «оцифровка» сигнала (превращение аналогового сигнала в цифровой) сопряжена с квантованием отсчѐтов - каждый отсчѐт записывается в виде цифрового кода конечной разрядности, в результате чего к отсчетам добавляются ошибки квантования (округления), при определенных условиях рассматриваемые как «шум квантования».

Реальные сигналы конечной длительности всегда имеют бесконечно широкий спектр, более или менее быстро убывающий с ростом частоты. Поэтому дискретизация сигналов всегда приводит к потерям информации (искажению формы сигнала при дискретизации-восстановлении), как бы ни была высока частота дискретизации. При выбранной частоте дискретизации искажение можно уменьшить, если обеспечить подавление спектральных составляющих аналогового сигнала (до дискретизации), лежащих выше частоты Найквиста, для чего требуется фильтр очень высокого порядка, чтобы избежать наложения «хвостов». Практическая реализация такого фильтра весьма сложна, так как амплитудно-частотные характеристики фильтров имеют не прямоугольную, а гладкую форму, и образуется некоторая переходная полоса частот между полосой пропускания и полосой подавления. Поэтому частоту дискретизации выбирают с запасом, к примеру, в аудио компакт-дисках используется частота дискретизации 44100 Герц, в то время как высшей частотой в спектре звуковых сигналов считается частота 20000 Гц. Запас по частоте Найквиста в 44100 / 2 - 20000 = 2050 Гц позволяет избежать подмены частот при использовании реализуемого фильтра невысокого порядка.

Теорема Котельникова

Для того, чтобы восстановить исходный непрерывный сигнал из дискретизированного с малыми искажениями (погрешностями), необходимо рационально выбрать шаг дискретизации. Поэтому при преобразовании аналогового сигнала в дискретный обязательно возникает вопрос о величине шага дискретизации Интуитивно нетрудно понять следующую идею. Если аналоговый сигнал обладает низкочастотным спектром, ограниченным некоторой верхней частотой Fe, (т.е. функция u(t) имеет вид плавно изменяющейся кривой, без резких изменений амплитуды), то вряд ли на некотором небольшом временном интервале дискретизации эта функция может существенно изменяться по амплитуде. Совершенно очевидно, что точность восстановления аналогового сигнала по последовательности его отсчетов зависит от величины интервала дискретизации Чем он короче, тем меньше будет отличаться функция u(t) от плавной кривой, проходящей через точки отсчетов. Однако с уменьшением интервала дискретизации существенно возрастает сложность и объем обрабатывающей аппаратуры. При достаточно большом интервале дискретизации возрастает вероятность искажения или потери информации при восстановлении аналогового сигнала. Оптимальная величина интервала дискретизации устанавливается теоремой Котельникова (другие названия - теорема отсчетов, теорема К. Шеннона, теорема X. Найквиста: впервые теорема была открыта в математике О. Коши, а затем описана повторно Д. Карсоном и Р. Хартли), доказанной им в 1933 г. Теорема В. А. Котельникова имеет важное теоретическое и практическое значение: дает возможность правильно осуществить дискретизацию аналогового сигнала и определяет оптимальный способ его восстановления на приемном конце по отсчетным значениям.

Согласно одной из наиболее известных и простых интерпретаций теоремы Котельникова, произвольный сигнал u(t), спектр которого ограничен некоторой частотой Fe может - быть полностью восстановлен по последовательности своих отсчетных значений, следующих с интервалом времени

Интервал дискретизации и частоту Fe (1) в радиотехнике часто называют соответственно интервалом и частотой Найквиста. Аналитически теорема Котельникова представляется рядом

где k - номер отсчета; - значение сигнала в точках отсчета - верхняя частота спектра сигнала.

Частотное представление дискретных сигналов .

Большинство сигналов можно представить в виде ряда Фурье: